In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.
نویسندگان
چکیده
The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.
منابع مشابه
Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study
Background The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases...
متن کاملNAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat.
Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following b...
متن کاملγ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.
Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Her...
متن کاملSynthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling.
Early physiological and pharmacological studies of crayfish and squid giant nerve fibers suggested that glutamate released from the axon during action potential generation initiates metabolic and electrical responses of periaxonal glia. However, more recent investigations in our laboratories suggest that N-acetylaspartylglutamate (NAAG) may be the released agent active at the glial cell membran...
متن کاملIn vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla.
A method is described that allows the in vivo differentiation of N-acetyl aspartate (NAA) from N-acetyl aspartyl glutamate (NAAG) by in vivo MR spectroscopy (MRS) at 3 Tesla (3T). The method, which is based on MEGA-point-resolved spectroscopy (PRESS) editing, selectively targets the aspartyl spin system of one species while deliberately removing the other species from the spectrum. This allows ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Schizophrenia bulletin
دوره 39 5 شماره
صفحات -
تاریخ انتشار 2013